Product Description
Details Images:
1.It is geared up with an angular get in touch with ball bearing, so it can assist the external load with the rigid moment and massive allowable instant
2.Easy assemble, tiny vibration
3.It can lessen the motor straight junction (enter gear) and inertia
4.Massive torsional rigidity
5.Powerful affect resistance (five hundred% of rated torque)
6.The crankshaft is supported by 2 columns in the reducer
seven.Outstanding beginning efficiency & Modest put on and extended provider lifestyle
8.Little backlash (1arc. Min.) & Use rolling bearing
nine.Strong affect resistance (five hundred% of rated torque)
10.The variety of simultaneous engagements in between RV equipment and needle teeth is huge
Advantages:
one. Higher precision, high torque
2. Dedicated technical personnel can be on the go to supply design and style solutions
three. Manufacturing facility direct product sales wonderful workmanship tough quality assurance
4. Solution top quality concerns have a 1-12 months warranty time, can be returned for alternative or restore
Company profile:
HangZhou CZPT Engineering Co., Ltd. was recognized in 2014. Primarily based on extended-expression accrued knowledge in mechanical layout and production, various kinds of harmonic reducers have been developed in accordance to the diverse needs of consumers. The firm is in a stage of quick growth. , Equipment and staff are continuously growing. Now we have a team of seasoned specialized and managerial personnel, with superior equipment, full screening techniques, and merchandise production and style abilities. Item layout and manufacturing can be carried out in accordance to client requirements, and a range of large-precision transmission factors this sort of as harmonic reducers and RV reducers have been shaped the merchandise have been marketed in domestic and worldwide(This kind of as United states of america, Germany, Turkey, India) and have been employed in industrial robots, device instruments, health-related products, laser processing, reducing, and dispensing, Brush creating, LED tools manufacturing, precision electronic gear, and other industries have recognized a great reputation.
In the foreseeable future, Hongwing will adhere to the objective of accumulating skills, maintaining near to the market, and technological innovation, have forward the value pursuit in the area of harmonic generate&RV reducers, look for the typical improvement of the business and the modern society, and quietly create itself into a nicely-acknowledged brand name with impartial mental house legal rights. Top quality provider in the area of precision transmission”.
Toughness manufacturing unit:
Our plant has an total campus The number of workshops is all around 300 No matter whether it truly is from the creation of uncooked components and the procurement of raw materials to the inspection of completed products, we are carrying out it ourselves. There is a total production program
HST-I Parameter:
Rated Table | ||||||||||||||
Output rotational pace (rpm) | 5 | ten | 15 | 20 | twenty five | 30 | forty | fifty | 60 | |||||
Model | Speed ratio code | Transmission Ratio(R) | Output Torque (Nm) / Enter the potential (kW |
|||||||||||
Rotation of axes | Housing rotation | |||||||||||||
RV-6E | 31 | 31 | 30 | 101 / .07 |
81 / .11 |
72 / .15 |
66 / .19 |
62 / .22 |
58 / .25 |
54 / .thirty |
50 / .35 |
47 / .40 |
||
43 | 43 | 42 | ||||||||||||
53.5 | 53.five | 52.five | ||||||||||||
fifty nine | 59 | 58 | ||||||||||||
seventy nine | seventy nine | 78 | ||||||||||||
103 | 103 | 102 | ||||||||||||
RV-20E | fifty seven | 57 | 56 | 231 / .16 |
188 / .26 |
167 / .35 |
153 / .43 |
143 / .50 |
135 / .57 |
124 / .70 |
115 / .eighty one |
110 / .92 |
||
81 | 81 | 80 | ||||||||||||
a hundred and five | one hundred and five | 104 | ||||||||||||
121 | 121 | 120 | ||||||||||||
141 | 141 | 140 | ||||||||||||
161 | 161 | 160 | ||||||||||||
RV-40E | 57 | fifty seven | 56 | 572 / .40 |
465 / .sixty five |
412 / .86 |
377 / 1.05 |
353 / 1.23 |
334 / 1.40 |
307 / 1.71 |
287 / 2.00 |
271 / 2.27 |
||
81 | 81 | 80 | ||||||||||||
one zero five | 105 | 104 | ||||||||||||
121 | 121 | 120 | ||||||||||||
153 | 153 | 152 | ||||||||||||
RV-80E | fifty seven | fifty seven | 56 | 1,088 / .76 |
885 / 1.24 |
784 / 1.64 |
719 / 2.01 |
672 / 2.35 |
637 / 2.sixty seven |
584 / 3.26 |
546 / 3.81 |
517 / 4.33 |
||
eighty one | 81 | 80 | ||||||||||||
101 | a hundred and one | 100 | ||||||||||||
121 | 121 | 120 | ||||||||||||
153 | 1(153) | 1(152) | ||||||||||||
RV-110E | 81 | 81 | 80 | 1,499 / 1.05 |
1,215 / 1.70 |
1,078 / 2.26 |
990 / 2.76 |
925 / 3.23 |
875 / 3.67 |
804 / 4.49 |
||||
111 | 111 | 110 | ||||||||||||
161 | 161 | 160 | ||||||||||||
175 | 1227/seven | 1220/seven | ||||||||||||
RV-160E | eighty one | eighty one | 80 | 2,176 / 1.fifty two |
1,774 / 2.48 |
1,568 / 3.28 |
1,441 / 4.02 |
1,343 / 4.69 |
1,274 / 5.34 |
|||||
a hundred and one | 101 | 100 | ||||||||||||
129 | 129 | 128 | ||||||||||||
one hundred forty five | a hundred forty five | 144 | ||||||||||||
171 | 171 | 170 | ||||||||||||
RV-320E | eighty one | eighty one | 80 | 4,361 / 3.04 |
3,538 / 4.94 |
3,136 / 6.fifty seven |
2,881 / 8.05 |
2,695 / 9.41 |
2,548 / 10.seven |
|||||
one hundred and one | one zero one | 100 | ||||||||||||
118.five | 118.five | 117.5 | ||||||||||||
129 | 129 | 128 | ||||||||||||
141 | 141 | 140 | ||||||||||||
171 | 171 | 170 | ||||||||||||
185 | 185 | 184 | ||||||||||||
RV-450E | eighty one | eighty one | 80 | 6,a hundred thirty five / 4.28 |
4,978 / 6.ninety five |
4,410 / 9.24 |
4,047 / 11.three |
3,783 / thirteen.2 |
||||||
one zero one | one hundred and one | 100 | ||||||||||||
118.5 | 118.5 | 117.5 | ||||||||||||
129 | 129 | 128 | ||||||||||||
154.eight | 2013/13 | 2000/thirteen | ||||||||||||
171 | 171 | 170 | ||||||||||||
192 | 1347/7 | 1340/seven | ||||||||||||
Notice: 1. The allowable output velocity is influenced by duty cycle, load, and ambient temperature. When the allowable output pace is earlier mentioned NS1, remember to seek the advice of our business about the safety measures. 2. Compute the enter ability (kW) by the subsequent system. |
||||||||||||||
Input potential (kW) =(2π*N*T)/(sixty*η/100*10*10*10) | N: output pace (RPM) T: output torque (nm) η = seventy five: reducer effectiveness (%) |
|||||||||||||
The input potential is the reference price. 3. When making use of the reducer at a minimal temperature, the no-load working torque will enhance, so please pay interest when choosing the motor. (refer to p.93 lower-temperature characteristics) |
T0 Rated torque(Remark .7) |
N0 Rated output speed |
K Rated life |
TS1 Allowable starting up and halting torque |
TS2 Instantaneous optimum allowable torque |
NS0 Allowable optimum output speed (Remark .1) |
Backlash | Vacant distance MAX. | Angle transmission mistake MAX. | A representative benefit of beginning performance | MO1 Allowable instant (Remark .4) |
MO2 Instantaneous maximum allowable moment |
Wr Allowable radial load (Remark .10) |
I Transformed benefit of inertia second input shaft (Remark .5) |
Weight |
(Nm) | (rpm) | (h) | (Nm) | (Nm) | (r/min) | (arc.sec.) | (arc.min.) | (arc.sec.) | (%) | (Nm) | (Nm) | (N) | (kgm2) | (kg) |
58 | 30 | 6,000 | 117 | 294 | 100 | 1.five | 1.five | 80 | 70 | 196 | 392 | 2,a hundred and forty | two.63×10-6 | 2.five |
2.00×10-6 | ||||||||||||||
1.53×10-six | ||||||||||||||
1.39×10-six | ||||||||||||||
one.09×10-six | ||||||||||||||
.74×10-6 | ||||||||||||||
167 | 15 | 6,000 | 412 | 833 | 75 | 1. | 1. | 70 | 75 | 882 | 1,764 | 7,785 | nine.66×10-six | 4.seven |
6.07×10-six | ||||||||||||||
four.32×10-6 | ||||||||||||||
three.56×10-6 | ||||||||||||||
2.88×10-6 | ||||||||||||||
two.39×10-6 | ||||||||||||||
412 | 15 | 6,000 | 1,571 | 2,058 | 70 | 1. | 1. | 60 | 85 | 1,666 | 3,332 | 11,594 | three.25×10-five | 9.three |
2.20×10-five | ||||||||||||||
one.63×10-5 | ||||||||||||||
1.37×10-5 | ||||||||||||||
1.01×10-5 | ||||||||||||||
784 | 15 | 6,000 | 1,960 | Bolt tightening 3920 | 70 | 1. | 1. | 50 | 85 | Bolt fastening 2156 | Bolt tightening | Bolt tightening 12988 | 8.16×10-five | Bolt tightening thirteen.1 |
six.00×10-five | ||||||||||||||
4.82×10-five | ||||||||||||||
Pin blend 3185 | Pin mix 1735 | Pin combination 2156 | Pin mixture 1571 | Pin combination twelve.seven | ||||||||||
3.96×10-five | ||||||||||||||
two.98×10-five | ||||||||||||||
1,078 | 15 | 6,000 | 2,695 | 5,390 | 50 | 1. | 1. | 50 | 85 | 2,940 | 5,880 | 16,648 | 9.88×10-five | 17.4 |
six.96×10-five | ||||||||||||||
4.36×10-5 | ||||||||||||||
three.89×10-five | ||||||||||||||
1,568 | 15 | 6,000 | 3,920 | Bolt tightening 7840 | 45 | 1. | 1. | 50 | 85 | 3,920 | Bolt tightening 7840 | 18,587 | 1.77×10-four | 26.4 |
1.40×10-4 | ||||||||||||||
1.06×10-4 | ||||||||||||||
Pin and use 6615 | Pin and use 6762 | |||||||||||||
.87×10-four | ||||||||||||||
.74×10-four | ||||||||||||||
3,136 | 15 | 6,000 | 7,840 | Bolt tightening 15680 | 35 | 1. | 1. | 50 | 80 | Bolt tightening 7056 | Bolt tightening 14112 | Bolt tightening 28067 | four.83×10-four | 44.three |
3.79×10-four | ||||||||||||||
three.15×10-four | ||||||||||||||
2.84×10-4 | ||||||||||||||
Pin mix 12250 | Pin mix 6174 | Pin and use 1571 | Pin blend 24558 | |||||||||||
two.54×10-4 | ||||||||||||||
1.97×10-4 | ||||||||||||||
1.77×10-four | ||||||||||||||
4,410 | 15 | 6,000 | 11,571 | Bolt tightening 22050 | 25 | 1. | 1. | 50 | 85 | 8,820 | Bolt tightening 17640 | 30,133 | eight.75×10-4 | 66.4 |
6.91×10-four | ||||||||||||||
5.75×10-4 | ||||||||||||||
5.20×10-4 | ||||||||||||||
Pin and use 18620 | Pin and use 13524 | |||||||||||||
4.12×10-four | ||||||||||||||
3.61×10-four | ||||||||||||||
three.07×10-four | ||||||||||||||
4. The allowable torque will range in accordance to the thrust load. You should verify by the allowable second line diagram (p.91). 5. The price of inertia moment is the price of the reducer human body. The minute of inertia of the enter gear is not included. six. For minute stiffness and torsion stiffness, you should refer to the calculation of inclination angle and torsion angle (p.99). seven. Rated torque refers to the torque value reflecting the rated life at rated output velocity, not the information showing the upper limit of load. Remember to refer to the glossary (p.81) and solution selection movement chart (p.82). eight. If you want to buy items other than the previously mentioned pace ratio, remember to seek the advice of our organization. nine. The earlier mentioned specs are acquired according to the company’s evaluation strategy. You should affirm that the item meets the use circumstances of carrying true aircraft before use. 10. When a radial load is utilized to dimension B, make sure you use it within the allowable radial load selection. 11. 1 RV-80e r = 153 is only output shaft bolt fastening type( P.20,21) |
Apps:
FQA:
Q: What ought to I provide when I decide on a gearbox/pace reducer?
A: The greatest way is to supply the motor drawing with parameters. Our engineer will check out and advise the most appropriate gearbox design for your reference.
Or you can also offer the under specification as well:
one) Type, model, and torque.
2) Ratio or output pace
three) Operating problem and relationship strategy
four) Top quality and set up device title
5) Input method and input speed
six) Motor manufacturer product or flange and motor shaft measurement
US $620-1,300 / Piece | |
1 Piece (Min. Order) |
###
Application: | Motor, Motorcycle, Machinery, Agricultural Machinery |
---|---|
Hardness: | Hardened Tooth Surface |
Installation: | Horizontal Type |
Layout: | Coaxial |
Gear Shape: | Cylindrical Gear |
Step: | Single-Step |
###
Samples: |
US$ 600/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
Rated Table | ||||||||||||||
Output rotational speed (rpm) | 5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | |||||
Model | Speed ratio code | Transmission Ratio(R) | Output Torque (Nm) / Enter the capacity (kW |
|||||||||||
Rotation of axes | Housing rotation | |||||||||||||
RV-6E | 31 | 31 | 30 | 101 / 0.07 |
81 / 0.11 |
72 / 0.15 |
66 / 0.19 |
62 / 0.22 |
58 / 0.25 |
54 / 0.30 |
50 / 0.35 |
47 / 0.40 |
||
43 | 43 | 42 | ||||||||||||
53.5 | 53.5 | 52.5 | ||||||||||||
59 | 59 | 58 | ||||||||||||
79 | 79 | 78 | ||||||||||||
103 | 103 | 102 | ||||||||||||
RV-20E | 57 | 57 | 56 | 231 / 0.16 |
188 / 0.26 |
167 / 0.35 |
153 / 0.43 |
143 / 0.50 |
135 / 0.57 |
124 / 0.70 |
115 / 0.81 |
110 / 0.92 |
||
81 | 81 | 80 | ||||||||||||
105 | 105 | 104 | ||||||||||||
121 | 121 | 120 | ||||||||||||
141 | 141 | 140 | ||||||||||||
161 | 161 | 160 | ||||||||||||
RV-40E | 57 | 57 | 56 | 572 / 0.40 |
465 / 0.65 |
412 / 0.86 |
377 / 1.05 |
353 / 1.23 |
334 / 1.40 |
307 / 1.71 |
287 / 2.00 |
271 / 2.27 |
||
81 | 81 | 80 | ||||||||||||
105 | 105 | 104 | ||||||||||||
121 | 121 | 120 | ||||||||||||
153 | 153 | 152 | ||||||||||||
RV-80E | 57 | 57 | 56 | 1,088 / 0.76 |
885 / 1.24 |
784 / 1.64 |
719 / 2.01 |
672 / 2.35 |
637 / 2.67 |
584 / 3.26 |
546 / 3.81 |
517 / 4.33 |
||
81 | 81 | 80 | ||||||||||||
101 | 101 | 100 | ||||||||||||
121 | 121 | 120 | ||||||||||||
153 | 1(153) | 1(152) | ||||||||||||
RV-110E | 81 | 81 | 80 | 1,499 / 1.05 |
1,215 / 1.70 |
1,078 / 2.26 |
990 / 2.76 |
925 / 3.23 |
875 / 3.67 |
804 / 4.49 |
||||
111 | 111 | 110 | ||||||||||||
161 | 161 | 160 | ||||||||||||
175 | 1227/7 | 1220/7 | ||||||||||||
RV-160E | 81 | 81 | 80 | 2,176 / 1.52 |
1,774 / 2.48 |
1,568 / 3.28 |
1,441 / 4.02 |
1,343 / 4.69 |
1,274 / 5.34 |
|||||
101 | 101 | 100 | ||||||||||||
129 | 129 | 128 | ||||||||||||
145 | 145 | 144 | ||||||||||||
171 | 171 | 170 | ||||||||||||
RV-320E | 81 | 81 | 80 | 4,361 / 3.04 |
3,538 / 4.94 |
3,136 / 6.57 |
2,881 / 8.05 |
2,695 / 9.41 |
2,548 / 10.7 |
|||||
101 | 101 | 100 | ||||||||||||
118.5 | 118.5 | 117.5 | ||||||||||||
129 | 129 | 128 | ||||||||||||
141 | 141 | 140 | ||||||||||||
171 | 171 | 170 | ||||||||||||
185 | 185 | 184 | ||||||||||||
RV-450E | 81 | 81 | 80 | 6,135 / 4.28 |
4,978 / 6.95 |
4,410 / 9.24 |
4,047 / 11.3 |
3,783 / 13.2 |
||||||
101 | 101 | 100 | ||||||||||||
118.5 | 118.5 | 117.5 | ||||||||||||
129 | 129 | 128 | ||||||||||||
154.8 | 2013/13 | 2000/13 | ||||||||||||
171 | 171 | 170 | ||||||||||||
192 | 1347/7 | 1340/7 | ||||||||||||
Note: 1. The allowable output speed is affected by duty cycle, load, and ambient temperature. When the allowable output speed is above NS1, please consult our company about the precautions. 2. Calculate the input capacity (kW) by the following formula. |
||||||||||||||
Input capacity (kW) =(2π*N*T)/(60*η/100*10*10*10) | N: output speed (RPM) T: output torque (nm) η = 75: reducer efficiency (%) |
|||||||||||||
The input capacity is the reference value. 3. When using the reducer at a low temperature, the no-load running torque will increase, so please pay attention when selecting the motor. (refer to p.93 low-temperature characteristics) |
###
T0 Rated torque(Remark .7) |
N0 Rated output speed |
K Rated life |
TS1 Allowable starting and stopping torque |
TS2 Instantaneous maximum allowable torque |
NS0 Allowable maximum output speed (Remark .1) |
Backlash | Empty distance MAX. | Angle transmission error MAX. | A representative value of starting efficiency | MO1 Allowable moment (Remark .4) |
MO2 Instantaneous maximum allowable moment |
Wr Allowable radial load (Remark .10) |
I Converted value of inertia moment input shaft (Remark .5) |
Weight |
(Nm) | (rpm) | (h) | (Nm) | (Nm) | (r/min) | (arc.sec.) | (arc.min.) | (arc.sec.) | (%) | (Nm) | (Nm) | (N) | (kgm2) | (kg) |
58 | 30 | 6,000 | 117 | 294 | 100 | 1.5 | 1.5 | 80 | 70 | 196 | 392 | 2,140 | 2.63×10-6 | 2.5 |
2.00×10-6 | ||||||||||||||
1.53×10-6 | ||||||||||||||
1.39×10-6 | ||||||||||||||
1.09×10-6 | ||||||||||||||
0.74×10-6 | ||||||||||||||
167 | 15 | 6,000 | 412 | 833 | 75 | 1.0 | 1.0 | 70 | 75 | 882 | 1,764 | 7,785 | 9.66×10-6 | 4.7 |
6.07×10-6 | ||||||||||||||
4.32×10-6 | ||||||||||||||
3.56×10-6 | ||||||||||||||
2.88×10-6 | ||||||||||||||
2.39×10-6 | ||||||||||||||
412 | 15 | 6,000 | 1,029 | 2,058 | 70 | 1.0 | 1.0 | 60 | 85 | 1,666 | 3,332 | 11,594 | 3.25×10-5 | 9.3 |
2.20×10-5 | ||||||||||||||
1.63×10-5 | ||||||||||||||
1.37×10-5 | ||||||||||||||
1.01×10-5 | ||||||||||||||
784 | 15 | 6,000 | 1,960 | Bolt tightening 3920 | 70 | 1.0 | 1.0 | 50 | 85 | Bolt fastening 2156 | Bolt tightening | Bolt tightening 12988 | 8.16×10-5 | Bolt tightening 13.1 |
6.00×10-5 | ||||||||||||||
4.82×10-5 | ||||||||||||||
Pin combination 3185 | Pin combination 1735 | Pin combination 2156 | Pin combination 10452 | Pin combination 12.7 | ||||||||||
3.96×10-5 | ||||||||||||||
2.98×10-5 | ||||||||||||||
1,078 | 15 | 6,000 | 2,695 | 5,390 | 50 | 1.0 | 1.0 | 50 | 85 | 2,940 | 5,880 | 16,648 | 9.88×10-5 | 17.4 |
6.96×10-5 | ||||||||||||||
4.36×10-5 | ||||||||||||||
3.89×10-5 | ||||||||||||||
1,568 | 15 | 6,000 | 3,920 | Bolt tightening 7840 | 45 | 1.0 | 1.0 | 50 | 85 | 3,920 | Bolt tightening 7840 | 18,587 | 1.77×10-4 | 26.4 |
1.40×10-4 | ||||||||||||||
1.06×10-4 | ||||||||||||||
Pin and use 6615 | Pin and use 6762 | |||||||||||||
0.87×10-4 | ||||||||||||||
0.74×10-4 | ||||||||||||||
3,136 | 15 | 6,000 | 7,840 | Bolt tightening 15680 | 35 | 1.0 | 1.0 | 50 | 80 | Bolt tightening 7056 | Bolt tightening 14112 | Bolt tightening 28067 | 4.83×10-4 | 44.3 |
3.79×10-4 | ||||||||||||||
3.15×10-4 | ||||||||||||||
2.84×10-4 | ||||||||||||||
Pin combination 12250 | Pin combination 6174 | Pin and use 10976 | Pin combination 24558 | |||||||||||
2.54×10-4 | ||||||||||||||
1.97×10-4 | ||||||||||||||
1.77×10-4 | ||||||||||||||
4,410 | 15 | 6,000 | 11,025 | Bolt tightening 22050 | 25 | 1.0 | 1.0 | 50 | 85 | 8,820 | Bolt tightening 17640 | 30,133 | 8.75×10-4 | 66.4 |
6.91×10-4 | ||||||||||||||
5.75×10-4 | ||||||||||||||
5.20×10-4 | ||||||||||||||
Pin and use 18620 | Pin and use 13524 | |||||||||||||
4.12×10-4 | ||||||||||||||
3.61×10-4 | ||||||||||||||
3.07×10-4 | ||||||||||||||
4. The allowable torque will vary according to the thrust load. Please confirm by the allowable moment line diagram (p.91). 5. The value of inertia moment is the value of the reducer body. The moment of inertia of the input gear is not included. 6. For moment stiffness and torsion stiffness, please refer to the calculation of inclination angle and torsion angle (p.99). 7. Rated torque refers to the torque value reflecting the rated life at rated output speed, not the data showing the upper limit of load. Please refer to the glossary (p.81) and product selection flow chart (p.82). 8. If you want to buy products other than the above speed ratio, please consult our company. 9. The above specifications are obtained according to the company’s evaluation method. Please confirm that the product meets the use conditions of carrying real aircraft before use. 10. When a radial load is applied to dimension B, please use it within the allowable radial load range. 11. 1 RV-80e r = 153 is only output shaft bolt fastening type( P.20,21) |
US $620-1,300 / Piece | |
1 Piece (Min. Order) |
###
Application: | Motor, Motorcycle, Machinery, Agricultural Machinery |
---|---|
Hardness: | Hardened Tooth Surface |
Installation: | Horizontal Type |
Layout: | Coaxial |
Gear Shape: | Cylindrical Gear |
Step: | Single-Step |
###
Samples: |
US$ 600/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
Rated Table | ||||||||||||||
Output rotational speed (rpm) | 5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | |||||
Model | Speed ratio code | Transmission Ratio(R) | Output Torque (Nm) / Enter the capacity (kW |
|||||||||||
Rotation of axes | Housing rotation | |||||||||||||
RV-6E | 31 | 31 | 30 | 101 / 0.07 |
81 / 0.11 |
72 / 0.15 |
66 / 0.19 |
62 / 0.22 |
58 / 0.25 |
54 / 0.30 |
50 / 0.35 |
47 / 0.40 |
||
43 | 43 | 42 | ||||||||||||
53.5 | 53.5 | 52.5 | ||||||||||||
59 | 59 | 58 | ||||||||||||
79 | 79 | 78 | ||||||||||||
103 | 103 | 102 | ||||||||||||
RV-20E | 57 | 57 | 56 | 231 / 0.16 |
188 / 0.26 |
167 / 0.35 |
153 / 0.43 |
143 / 0.50 |
135 / 0.57 |
124 / 0.70 |
115 / 0.81 |
110 / 0.92 |
||
81 | 81 | 80 | ||||||||||||
105 | 105 | 104 | ||||||||||||
121 | 121 | 120 | ||||||||||||
141 | 141 | 140 | ||||||||||||
161 | 161 | 160 | ||||||||||||
RV-40E | 57 | 57 | 56 | 572 / 0.40 |
465 / 0.65 |
412 / 0.86 |
377 / 1.05 |
353 / 1.23 |
334 / 1.40 |
307 / 1.71 |
287 / 2.00 |
271 / 2.27 |
||
81 | 81 | 80 | ||||||||||||
105 | 105 | 104 | ||||||||||||
121 | 121 | 120 | ||||||||||||
153 | 153 | 152 | ||||||||||||
RV-80E | 57 | 57 | 56 | 1,088 / 0.76 |
885 / 1.24 |
784 / 1.64 |
719 / 2.01 |
672 / 2.35 |
637 / 2.67 |
584 / 3.26 |
546 / 3.81 |
517 / 4.33 |
||
81 | 81 | 80 | ||||||||||||
101 | 101 | 100 | ||||||||||||
121 | 121 | 120 | ||||||||||||
153 | 1(153) | 1(152) | ||||||||||||
RV-110E | 81 | 81 | 80 | 1,499 / 1.05 |
1,215 / 1.70 |
1,078 / 2.26 |
990 / 2.76 |
925 / 3.23 |
875 / 3.67 |
804 / 4.49 |
||||
111 | 111 | 110 | ||||||||||||
161 | 161 | 160 | ||||||||||||
175 | 1227/7 | 1220/7 | ||||||||||||
RV-160E | 81 | 81 | 80 | 2,176 / 1.52 |
1,774 / 2.48 |
1,568 / 3.28 |
1,441 / 4.02 |
1,343 / 4.69 |
1,274 / 5.34 |
|||||
101 | 101 | 100 | ||||||||||||
129 | 129 | 128 | ||||||||||||
145 | 145 | 144 | ||||||||||||
171 | 171 | 170 | ||||||||||||
RV-320E | 81 | 81 | 80 | 4,361 / 3.04 |
3,538 / 4.94 |
3,136 / 6.57 |
2,881 / 8.05 |
2,695 / 9.41 |
2,548 / 10.7 |
|||||
101 | 101 | 100 | ||||||||||||
118.5 | 118.5 | 117.5 | ||||||||||||
129 | 129 | 128 | ||||||||||||
141 | 141 | 140 | ||||||||||||
171 | 171 | 170 | ||||||||||||
185 | 185 | 184 | ||||||||||||
RV-450E | 81 | 81 | 80 | 6,135 / 4.28 |
4,978 / 6.95 |
4,410 / 9.24 |
4,047 / 11.3 |
3,783 / 13.2 |
||||||
101 | 101 | 100 | ||||||||||||
118.5 | 118.5 | 117.5 | ||||||||||||
129 | 129 | 128 | ||||||||||||
154.8 | 2013/13 | 2000/13 | ||||||||||||
171 | 171 | 170 | ||||||||||||
192 | 1347/7 | 1340/7 | ||||||||||||
Note: 1. The allowable output speed is affected by duty cycle, load, and ambient temperature. When the allowable output speed is above NS1, please consult our company about the precautions. 2. Calculate the input capacity (kW) by the following formula. |
||||||||||||||
Input capacity (kW) =(2π*N*T)/(60*η/100*10*10*10) | N: output speed (RPM) T: output torque (nm) η = 75: reducer efficiency (%) |
|||||||||||||
The input capacity is the reference value. 3. When using the reducer at a low temperature, the no-load running torque will increase, so please pay attention when selecting the motor. (refer to p.93 low-temperature characteristics) |
###
T0 Rated torque(Remark .7) |
N0 Rated output speed |
K Rated life |
TS1 Allowable starting and stopping torque |
TS2 Instantaneous maximum allowable torque |
NS0 Allowable maximum output speed (Remark .1) |
Backlash | Empty distance MAX. | Angle transmission error MAX. | A representative value of starting efficiency | MO1 Allowable moment (Remark .4) |
MO2 Instantaneous maximum allowable moment |
Wr Allowable radial load (Remark .10) |
I Converted value of inertia moment input shaft (Remark .5) |
Weight |
(Nm) | (rpm) | (h) | (Nm) | (Nm) | (r/min) | (arc.sec.) | (arc.min.) | (arc.sec.) | (%) | (Nm) | (Nm) | (N) | (kgm2) | (kg) |
58 | 30 | 6,000 | 117 | 294 | 100 | 1.5 | 1.5 | 80 | 70 | 196 | 392 | 2,140 | 2.63×10-6 | 2.5 |
2.00×10-6 | ||||||||||||||
1.53×10-6 | ||||||||||||||
1.39×10-6 | ||||||||||||||
1.09×10-6 | ||||||||||||||
0.74×10-6 | ||||||||||||||
167 | 15 | 6,000 | 412 | 833 | 75 | 1.0 | 1.0 | 70 | 75 | 882 | 1,764 | 7,785 | 9.66×10-6 | 4.7 |
6.07×10-6 | ||||||||||||||
4.32×10-6 | ||||||||||||||
3.56×10-6 | ||||||||||||||
2.88×10-6 | ||||||||||||||
2.39×10-6 | ||||||||||||||
412 | 15 | 6,000 | 1,029 | 2,058 | 70 | 1.0 | 1.0 | 60 | 85 | 1,666 | 3,332 | 11,594 | 3.25×10-5 | 9.3 |
2.20×10-5 | ||||||||||||||
1.63×10-5 | ||||||||||||||
1.37×10-5 | ||||||||||||||
1.01×10-5 | ||||||||||||||
784 | 15 | 6,000 | 1,960 | Bolt tightening 3920 | 70 | 1.0 | 1.0 | 50 | 85 | Bolt fastening 2156 | Bolt tightening | Bolt tightening 12988 | 8.16×10-5 | Bolt tightening 13.1 |
6.00×10-5 | ||||||||||||||
4.82×10-5 | ||||||||||||||
Pin combination 3185 | Pin combination 1735 | Pin combination 2156 | Pin combination 10452 | Pin combination 12.7 | ||||||||||
3.96×10-5 | ||||||||||||||
2.98×10-5 | ||||||||||||||
1,078 | 15 | 6,000 | 2,695 | 5,390 | 50 | 1.0 | 1.0 | 50 | 85 | 2,940 | 5,880 | 16,648 | 9.88×10-5 | 17.4 |
6.96×10-5 | ||||||||||||||
4.36×10-5 | ||||||||||||||
3.89×10-5 | ||||||||||||||
1,568 | 15 | 6,000 | 3,920 | Bolt tightening 7840 | 45 | 1.0 | 1.0 | 50 | 85 | 3,920 | Bolt tightening 7840 | 18,587 | 1.77×10-4 | 26.4 |
1.40×10-4 | ||||||||||||||
1.06×10-4 | ||||||||||||||
Pin and use 6615 | Pin and use 6762 | |||||||||||||
0.87×10-4 | ||||||||||||||
0.74×10-4 | ||||||||||||||
3,136 | 15 | 6,000 | 7,840 | Bolt tightening 15680 | 35 | 1.0 | 1.0 | 50 | 80 | Bolt tightening 7056 | Bolt tightening 14112 | Bolt tightening 28067 | 4.83×10-4 | 44.3 |
3.79×10-4 | ||||||||||||||
3.15×10-4 | ||||||||||||||
2.84×10-4 | ||||||||||||||
Pin combination 12250 | Pin combination 6174 | Pin and use 10976 | Pin combination 24558 | |||||||||||
2.54×10-4 | ||||||||||||||
1.97×10-4 | ||||||||||||||
1.77×10-4 | ||||||||||||||
4,410 | 15 | 6,000 | 11,025 | Bolt tightening 22050 | 25 | 1.0 | 1.0 | 50 | 85 | 8,820 | Bolt tightening 17640 | 30,133 | 8.75×10-4 | 66.4 |
6.91×10-4 | ||||||||||||||
5.75×10-4 | ||||||||||||||
5.20×10-4 | ||||||||||||||
Pin and use 18620 | Pin and use 13524 | |||||||||||||
4.12×10-4 | ||||||||||||||
3.61×10-4 | ||||||||||||||
3.07×10-4 | ||||||||||||||
4. The allowable torque will vary according to the thrust load. Please confirm by the allowable moment line diagram (p.91). 5. The value of inertia moment is the value of the reducer body. The moment of inertia of the input gear is not included. 6. For moment stiffness and torsion stiffness, please refer to the calculation of inclination angle and torsion angle (p.99). 7. Rated torque refers to the torque value reflecting the rated life at rated output speed, not the data showing the upper limit of load. Please refer to the glossary (p.81) and product selection flow chart (p.82). 8. If you want to buy products other than the above speed ratio, please consult our company. 9. The above specifications are obtained according to the company’s evaluation method. Please confirm that the product meets the use conditions of carrying real aircraft before use. 10. When a radial load is applied to dimension B, please use it within the allowable radial load range. 11. 1 RV-80e r = 153 is only output shaft bolt fastening type( P.20,21) |
Condition Monitoring of Cyclone Gearboxes
Whether you’re considering using a cycloidal gearbox in your home, office, or garage, you’ll want to make sure it’s made of quality material. You also want to make sure it’s designed properly, so it won’t be damaged by vibrations.
Planetary gearboxes
Compared to cycloidal gearboxes, planetary gearboxes are lighter and more compact, but they lack the precision and durability of the former. They are better suited for applications with high torque or speed requirements. For this reason, they are usually used in robotics applications. But, cycloidal gearboxes are still better for some applications, including those involving shock loads.
There are many factors that affect the performance of gearboxes during production. One of these is the number of teeth. In the case of planetary gearboxes, the number of teeth increases with the number of planets. The number of teeth is reduced in cycloidal gearboxes, which results in higher transmission ratios. These gearboxes also have lower breakaway torques, which means that they can be controlled more easily by the user.
A cycloid gearbox is comprised of three main parts: the ring gear, the sun gear, and the input shaft. The ring gear is fixed in the gearbox, while the sun gear transmits the rotation to the planet gears. The input shaft transfers motion to the sun gear, which in turn transmits it to the output shaft. The output shaft has a larger torque than the input shaft.
Cycloid gears have better torsional stiffness, lower wear, and lower Hertzian contact stress. However, they are also larger in size and require highly accurate manufacturing. Cycloid gears can be more difficult to manufacture than involute gears, which require large amounts of precision.
Cycloid gears can offer transmission ratios up to 300:1, and they can do this in a small package. They also have lower wear and friction, which makes them ideal for applications that require a high transmission ratio.
Cycloid gearboxes are usually equipped with a backlash of about one angular minute. This backlash provides the precision and control necessary for accurate movement. They also provide low wear and shock load capacity.
Planetary gearboxes are available in single and two-stage designs, which increase in length as stages are added. In addition to the two stages, they can be equipped with an optional output bearing, which takes up mounting space. In some applications, a third stage is also available.
Involute gears
Generally, involute gears are more complex to manufacture than cycloidal gears. For example, an involute gear tooth profile has a single curve while a cycloidal gear tooth profile has two curves. In addition, the involute curve is not within the base circle.
The involute curve is a very important component of a gear tooth and it can significantly influence the quality of contact meshing between teeth. Various works have been done on the subject, mainly focusing on the operating principles. In addition, the most important characteristic of the double-enveloping cycloid drive is its double contact lines between the meshing tooth pairs.
Cycloid gears are more powerful, less noisy, and last longer than involute gears. They also require less manufacturing operations during production. However, cycloid gears are more expensive than involute gears. Involute gears are more commonly used in linear motions while cycloid gears are used for rotary motions.
Although cycloid gears are more technically advanced, involute gears have the superior quality and are more aesthetically pleasing. Cycloid gears are used in various industrial applications such as pumps and compressors. They are also widely used in the watch industry. Nevertheless, involute gears have not yet replaced cycloid gears in the watch industry.
The cycloid disc has a number of pins around its outer edge, while an involute gear has only a single curve for the teeth. In addition, cycloid gears have a more robust and reliable design. Involute gears, on the other hand, have a cheaper rack cutter and less expensive involute teeth.
The cycloid disc’s transmission accuracy is about 98.5%, while the ring gear’s transmission accuracy is about 96%. The cycloid disc’s rotational velocity has a magnitude of 3 rad/s. A small change in the center distance does not affect the transmission accuracy. However, rotational velocity fluctuation can affect the transmission accuracy.
Cycloid gears also have the cycloid gear disc’s rotational velocity. The disc has N lobes. However, the cycloid gear disc’s transmission accuracy is still not perfect. This is because of the large rotational angles between the lobes. This also makes it difficult to manufacture.
Vibrations
Using modern techniques for vibration diagnostics and data-driven methods, this article presents a new approach to condition monitoring of cycloidal gearboxes. This approach focuses on detecting the root cause of gearbox failure. The article aims to provide a unified approach to gear designers.
A cycloidal gearbox is a high-precision gearbox that is used in heavy-duty machines. It has a large reduction ratio, which makes it necessary to have a very large input speed. Cycloid gears have high accuracy, but they are susceptible to vibration issues. In this article, the authors describe how a cycloidal gearbox works and how vibrations are measured. They also show how this gearbox can be used to detect faults.
The gearbox is used in positioners, multi-axis robots, and heavy-duty machines. The main characteristics of this gearbox are the high accuracy, the overload capacity, and the large reduction ratio.
There is little documentation on vibrations and condition monitoring of cycloidal gearboxes. The authors describe their approach to the problem, using a cycloidal gearbox and a testing bench. Their approach involves measuring the frequency of the gearbox with different input speeds.
The results show a good separation between the healthy and damaged states. Fault frequencies show up in the lower orders of frequencies. Faults can be detected using binning, which eliminates the need for a tachometer. In addition, binning is combined with Principal Component Analysis to determine the state of the gearbox.
This method is compared to traditional techniques. In addition, the results show how binning can be used to calculate the defect frequencies of the bearings. It is also used to determine the frequencies of the components.
The signals from the test bench are acquired using four sensors. These sensors are medium sensitivity 100 mV/g accelerometers. The signals are then processed using different signal processing techniques. The results show that the vibration signals are correlated with the internal motion of the gearbox. This information is used to identify the internal frequency of the transmission.
The frequency analysis of vibration signals is performed in cyclostationary and noncyclostationary conditions. The signals are then analyzed to determine the magnitude of the gear meshing frequency.
Design
Using precision gearboxes, servomotors can now control heavy loads at high speed. Unlike cam indexing devices, cycloidal gears provide extremely accurate positioning and high torque. They also provide excellent torsional stiffness and shock load capacity.
Cycloid gears are specially designed to minimize vibration at high RPM. Unlike involute gears, they are not stacked, which reduces friction and forces experienced by each tooth. In addition, cycloidal gears have lower Hertzian contact stress.
Cycloid gears are often used in multi-axis robots for positioners. They can provide transmission ratios as high as 300:1 in a compact package. They are also used in first joints in heavy machines. However, they require extremely accurate manufacturing. They are also more difficult to produce than involute gears.
A cycloidal gearbox is a type of planetary gearbox. Cycloid gears are specially designed for high gear ratios. They also have the ability to provide a large reduction ratio in a single stage. They are increasingly used in first joints in heavy machines. They are also becoming more common in robotics.
In order to achieve a large reduction ratio, the input speed of the gear must be very high. Generally, the input speed is between 500 rpm and 4500 rpm. However, in some cases, the input speed may be lower.
A cycloid is formed by rolling a rolling circle on a base circle. The ratio between the rolling circle diameter and the base circle diameter determines the shape of the cycloid. A hypocycloid is formed by rolling primarily on the inside of the base circle, while an epicycloid is formed by rolling primarily on the outside of the base circle.
Cycloid gears have a very small backlash, which minimizes the forces experienced by each tooth. These gears also have a good torsional stiffness, low friction, and shock load capacity. They also provide the best positioning accuracy.
The cycloidal gearbox was designed and built at Radom University. The design was based on three different cycloidal gears. The first pair had the external profile at the nominal dimension, while the second pair had the profile minus tolerance. The load plate had threaded screw holes arranged 15 mm away from the center.
editor by czh 2023-01-12